Search results

1 – 4 of 4
Article
Publication date: 17 January 2020

Qingchao Sun, Xin Liu, Xiaokai Mu and Yichao Gao

This paper aims to study the relationship between normal contact stiffness and contact load. It purpose a new calculation model of the normal contact stiffness of joint surfaces…

Abstract

Purpose

This paper aims to study the relationship between normal contact stiffness and contact load. It purpose a new calculation model of the normal contact stiffness of joint surfaces by considering the elastic–plastic critical deformation change of asperities contact.

Design/methodology/approach

The paper described the surface topography of joint surfaces based on fractal geometry, and fractal parameters and of fractal function derived from measurement data. According to the plastic–elastic contact theory, the contact deformation characteristic of asperities was analyzed; the critical deformation estimation model was presented, which expressed critical deformation as the function of fractal parameters and contact deformation; the contact stiffness calculation model of single asperity was brought forward by considering critical deformation change.

Findings

The paper combined the surface topography description function, analyzed the asperity contact states by considering the critical deformation change, and calculated normal contact stiffness based on fractal theory and contact deformation analysis. The comparison between theoretical contact stiffness and experimental data indicated that the theoretical normal contact stiffness agreed with the experimental data, and the estimation model for normal contact stiffness was appropriate.

Research limitations/implications

Owing to the possibility of plastic deformation during the loading process, the experimental curve between the contact stiffness and the contact load is nonlinear, resulting in an error between the experimental results and the theoretical calculation results.

Originality/value

The paper established the relationship between critical deformation and fractal surface topography by constructing asperity distribution function. The paper proposed a new normal contact stiffness calculation model of joint surfaces by considering the variation of critical deformation in contact process.

Details

Assembly Automation, vol. 40 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 12 March 2018

Wei Sun, Xiaokai Mu, Qingchao Sun, Zhiyong Sun and Xiaobang Wang

This paper aims to comprehensively achieve the requirements of high assembly precision and low cost, a precision-cost model of assembly based on three-dimensional (3D) tolerance…

Abstract

Purpose

This paper aims to comprehensively achieve the requirements of high assembly precision and low cost, a precision-cost model of assembly based on three-dimensional (3D) tolerance is established in this paper.

Design/methodology/approach

The assembly precision is related to the tolerance of parts and the deformation of matching surfaces under load. In this paper, the small displacement torsor (SDT) theory is first utilized to analyze the manufacturing tolerances of parts and the assembly deformation deviation of matching surface. In the meanwhile, the extracting method of SDT parameters is proposed and the assembly precision calculation model based on the 3D tolerance is established. Second, an integrated optimization model based on the machining cost, assembly cost (mapping the deviation domain to the SDT domain) and quality loss cost is built. Finally, the practicability of the precision-cost model is verified by optimizing the horizontal machining center.

Findings

The assembly deviation has a great influence on cost fluctuation. By setting the optimization objective to maximize the assembly precision, the optimal total cost is CNY 72.77, decreasing by 16.83 per cent from the initial value, which meets economical requirements. Meanwhile, the upper bound of each processing tolerance is close to the maximum value of 0.01 mm, indicating that the load deformation can be offset by appropriately increasing the upper bound of the tolerance, but it is necessary to strictly restrict the manufacturing tolerances of lower parts in a reasonable range.

Originality/value

In this paper, a 3D deviation precision-cost model of assembly is established, which can describe the assembly precision more accurately and achieve a lower cost compared with the assembly precision model based on rigid parts.

Details

Assembly Automation, vol. 38 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 17 October 2018

Xiaokai Mu, Qingchao Sun, Wei Sun, Yunlong Wang, Chuanhua Wang and Xiaobang Wang

The traditional precision design only takes the influence of geometric tolerance of the parts and does not involve the load deformation in the assembly process. This paper aims to…

Abstract

Purpose

The traditional precision design only takes the influence of geometric tolerance of the parts and does not involve the load deformation in the assembly process. This paper aims to analyze the influence mechanism of flexible parts deformation on the geometric precision, and then to ensure the reliability and stability of the mechanical system.

Design/methodology/approach

Firstly, this paper adopts the N-GPS to analyze the influence mechanism of flexible parts deformation on the geometric precision and constructs a coupling 3D tolerance mathematical model of the geometric tolerance and the load deformation deviation based on the SDT theory, homogeneous coordinate transformation theory and surface authentication idea. Secondly, the least square method is used to fit the deformation surface of the mating surface under load so as to complete the conversion from the non-ideal element to the ideal element.

Findings

This paper takes the horizontal machining center as a case to obtain the deformation information of the mating surface under the self-weight load. The results show that the deformation deviation of the parts has the trend of transmission and accumulation under the load. The terminal deformation cumulative amount of the system is up to –0.0249 mm, which indicated that the influence of parts deformation on the mechanical system precision cannot be ignored.

Originality/value

This paper establishes a comprehensive 3D tolerance mathematical model, which comprehensively considers the effect of the dimensional tolerance, geometric tolerance and load deformation deviation. By this way, the assembly precision of mechanical system can be accurately predicted.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 April 2019

Qingchao Sun, Xiaokai Mu, Bo Yuan, Jiawen Xu and Wei Sun

This paper aims to distinguish the relationship between the morphology characteristics of different scales and the contact performance of the mating surfaces. Also, an integrated…

Abstract

Purpose

This paper aims to distinguish the relationship between the morphology characteristics of different scales and the contact performance of the mating surfaces. Also, an integrated method of the spectrum analysis and the wavelet transform is used to separate the morphology characteristics of the actual machined parts.

Design/methodology/approach

First, a three-dimensional (3D) surface profilometer is used to obtain the surface morphology data of the actual machined parts. Second, the morphology characteristics of different scales are realized by the wavelet analysis and the power spectral density. Third, the reverse modeling engineering is used to construct the 3D contact models for the macroscopic characteristics. Finally, the finite element method is used to analyze the contact stiffness and the contact area of the 3D contact model.

Findings

The contact area and the nominal contact pressure Pn have a nonlinear relationship in the whole compression process for the 3D contact model. The percentage of the total contact area of the macro-scale mating surface is about 70 per cent when the contact pressure Pn is in the range of 0-100 MPa, and the elastic contact area accounts for the vast majority. Meanwhile, when the contact pressure Pn is less than 10MPa, the influence factor (the relative error of contact stiffness) is larger than 50 per cent, so the surface macro-scale morphology has a weakening effect on the normal contact stiffness of the mating surfaces.

Originality/value

This paper provides an effective method for the multi-scale separation of the surface morphology and then lays a certain theoretical foundation for improving the surface quality of parts and the morphology design.

Details

Engineering Computations, vol. 36 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 4 of 4